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Abstract.The uniform unenhancedorbital andspin-orbit susceptibilities,%,andX,, respect- 
ively, in Ni, Pd and Pt are evaluated by taking numerical extrapolations to 9 = 0 of our 
previous expressions for the wavenumber (9)-dependent orbital and spin-rbit suscep- 
tibilities, xa(q) and ,yp(q), respectively. The wavefunctions and energies required in these 
calculations are obtained from self-consirtent relativistic APW band calculations in the rela- 
tivisticlocd-densityapproximation.From astudyof trendsin%,andx, with the numberof 
conduction electrons per atom ratio for FCC 3d. 4d and 5d metal series, ,yo and xro in Rh, 11, 
Cu, Ag and Au are estimated in the rigid-band assumption with reasonable corrections. For 
all these metals,ourvaluesofx, t %$.showgood agreement withempiricalvalues, By using 
previously reported theoretical values of the enhanced spin susceptibility Ix,, the total 
susceptibilityx = fx, + (x. + ~~~)isestimatedandcomparedwithobservedresultsforthese 
metals. 

1. Introduction 

The spin contribution to the magneticsusceptibility in transition metals has been studied 
more extensively than the orbital contribution for many years and its discussion is 
becoming more and more quantitative; within the local-density theory of exchange 
and correlation Ill, the enhanced spin susceptibility has been calculated without any 
adjustable parameter for paramagnetic [Z-51 and ferromagnetic [6,7] transition metals. 
In order to discuss agreement or disagreement between theory and experiment, 
however, we need to study the orbital contribution to the magnetic susceptibility. In 
transition metals, the orbital contribution is not always negligible; the orbital sus- 
ceptibility is larger than the spin susceptibility in some transition metals. For the quan- 
titative study of the magneticsusceptibility in transition metals, the orbital susceptibility 
including the core diamagnetic susceptibility should be evaluated as correctly as possible. 
Since the enhancement effect is assumed to be not very significant in regard to orbital 
magnetism [&lo], we may treat the problem within the single-electron model for the 
present. 

We know a correct formula of the uniform unenhanced orbital susceptibility xorb for 
Bloch electrons [ I l l ,  but it is too complicated to be evaluated quantitatively. No one 
has done this properly for transition metals. This complicated formula, however, is 
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derived from the wavenumber (q)-dependent orbital susceptibility xarb(q) (121 by taking 
the limit q-* 0. One may, therefore, suppose that reasonably correct values ofxo,b may 
be obtained from a numerical extrapolation of xorb(q) to q = 0. This simple and practical 
scheme of calculation has been found successful in obtaining reliable values of xOrb in 3d 
transition metals 113-15). 

The computational scheme for ,yoib based on xorb(q) is inadequate for 4d and 5d 
transition metals. Relativisticeffectssuch as the spin-orbit coupling should be taken into 
account in these metals, but xorb(q) is derived in a non-relativistic manner. Relativistic 
expressions for the magnetic susceptibility are obtained from the Fourier components 
of the Diraccurrent induced by the applied external field. Yasui and Shimizu 116) have 
derived an expression for the generalized susceptibility ,y,,(q, q)  (q is the wavenumber 
vector) to discuss the uniform susceptibility &(O, 0), while Msra and Callaway (171 
have derived one for x12(G + q, q) (C # 0 is a reciprocal-lattice vector) to discuss the 
induced-moment form factor xz,(C, 0). A relativistic formula for the wavenumber- 
dependent susceptibility x(q) is obtained from XJq, q) by choosing q as q = (0, q, 0), 
for instance, and is expressed as the sum of three terms: the wavenumber-dependent 
spin, spin-orbit and orbital susceptibilities, xr(q), ~,(p) and xo(q), respcctively (161. 
The uniform unenhanced spin, spin-orbit and orbital susceptibilities, xs, xw and xo, are 
obtained by taking the limit q - 0 of ,y,(q), ,y,(q) and ~ " ( 4 ) .  respectively. In a previous 
paper [lei, we have calculated x o  and xm in typical BCC transition metals, V, Nb and W, 
by taking numerical extrapolations of &(q) and xm(q) to q = 0. and discussed the 
relativistic effects in BCC 3d, 4d and 5d transition metals. This time, we make similar 
calculations for typical FCC transition metals, Ni, Pd and Pt. 

Although Ni is ferromagnetic at low temperatures, its paramagnetic properties at 
higher temperatures are also of interest. Fortunately, the orbital contribution to the 
magnetic susceptibility is expected to be almost temperature independent, so that a 
correct evaluation of ,yo and x, in paramagnetic Ni is possible. On the other hand, Pd 
and Pt are of interest because of their large paramagnetic susceptibilities and associated 
magneticproperties. Since Ni,PdandPt are metalswithnearly filledd bands, theorbital 
contribution to the magneticsusceptibility isexpected to be small and has been neglected 
in most theoretical and experimental studies. We must, however, examine to what 
extent xo and &, are actually small in these metals. 

The method of calculation of x,, and;y, is explained briefly in section 2. Calculated 
results are shown and discussed in section 3, and concluding remarks are given in 
section 4. 

2. Method of calculation 

By using positive energy solutions (four-component Bloch function Ii) and its energy E;, 

where i designates a set of indices including the wavevector, band index and spin 
direction) of the Dirac equation for an electron in a periodic potential, x0(q) and x50(q) 
are written as [16] 

x d q )  = 4 - 2 P W ( q )  - 4 0 ) l  (1) 

x&?) = q - ' P M q )  (2) 

and 

where 
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and 

In the above expressions is one of the usual 4 X 4 Dirac matrices, Xz is one of the 
4 X 4 spin matrices, V is the volume of the system, pB is the Bohr magneton, Re( ) 
means the real part, and O,, = (1 - 8,)8,/(E, - E<) where 8, is a step function e(+ - E,) 

(8 (x  3 0) = 1, 8(x < 0) = 0) with the Fermi level E ~ .  These expressions are valid within 
the order of c - ~ ,  where c is the speed of light. In the limit c+m, X J q )  reduces to 
~ ~ ~ ( 4 ) .  while xso(q) reduces to 0 and represents explicitly a relativistic correction to 
the susceptibility. It should be noted that the core diamagnetic contribution to the 
susceptibility is already included in ,yo(q) + ,ym(q) as shown by Oh et a1 [19] in the non- 
relativistic case. 

The analytical formulae for x0 and xso are obtained by taking the limit q 4 0 of xo(q) 
and xso(q),  respectively, but are very complex to use for numerical calculations [20]. 
Therefore, we evaluate xo and as follows. Since A(q) and B(q) have expansions as 
A(4)  = a,, + azq2 + a4q4 + . . . and B(q) = b,q + b3q3 + b5q5 + . . . at q = 0, ,yo and,&, 
are given by ,yo = pta ,  and xm = p i b l .  The expansion coefficients a2 and bl are 
determined bycalculatingA(q) and 5(q) at severalsmallvaluesofqandfittingthe above 
expansion formulae to these calculated values. It is important to obtain the q-depen- 
dencesofA(q) and 5(q )  as correctly as possible and this is attainable if we carry out the 
reciprocal space summations in (3) and (4) by the tetrahedron method [21-241 based on 
a mesh of at least 16 divisions along the TX lines in the Brillouin zone (505 equally spaced 
mesh points in one forty-eighth of the Brillouin zone). As for small values of q, four 
values q2. q5, q8 and qI1 are assumed, where q,, = ( & / . ) a  and a is the lattice 
constant. Computational details have been explained elsewhere [13]. 

3. Calculated results and discussion 

3.1. Self-consistent energy band calculations 

Wavefunctions and energies required in the calculation of ,yo and ,yso are obtained 
from self-consistent relativistic APW band calculations in the relativistic local-density 
approximation. The outline of these band calculations is as follows. A muffin-tin-type 
crystal potential as proposed by Janak [2S] was employed. The relativistic exchange- 
correlation potential given by MacDonald era1 [S, 261 was used. The lattice constant was 
assumed to be 6.644 au in Ni [27], 7.340 au in Pd [SI and 7.398 au in Pt [5]. The usual 
relativistic APW method [a] was used to solve the Dirac equation by adopting about 35 
reciprocal-lattice vectors. The crystal potentials of Ni and Pd, tabulated by MONZZ~ et 
a1 [29], were used as starting potentials for our self-consistent calculations. As for Pt, 
our starting potential was obtained simply from overlapping atomic potentials of Pt, as 
calculated by Herman and Skillman [30]. For conduction electrons, wavefunctions and 
energies were calculated on 89 equally spaced mesh points in one forty-eighth of the 
Brillouin zone. The density of states and the electron density were calculated by using 
the tetrahedron method [21-241 with these mesh points. On the other hand, for core 
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Figure1.Self-consistenlenergiesinthe lowest l lbdnds plolledalongsome linesofrymmctry. 
The energies are relative to the Fermi level shown by the horizontal lines. 

electrons, we neglected the wavevector dependences of wavefunctions and energies. 
Core levels were obtained from the condition that the wavefunctions behave as atomic 
functions outside the APW sphere. The electron density was calculated from these atomic 
functions which were normalized within the Wigner-Seitz sphere. The cycle of the self- 
consistent calculation was finished when the difference between successive potentials 
became less than 0.01%, i.e. maxl(uNil - u ~ ) / u #  < and uN thus obtained was 
used in the subsequent calculation. The energies of conduction states converged to 
better than 0.3 mRyd. As for core states, seven or more significant figures of energy 
values were found to remain unchanged during the final few cycles. 

In figure 3 ,  the self-consistent energies in the lowest 12 bands for Ni, Pd and Pt are 
plotted along some lines of symmetry. The horizontal l i e s  show the Fermi level, 
respective values of which are 0.5165 Ryd, 0.4209 Ryd and 0.5249 Ryd for Ni, Pd and 
Pt. The spin-orbit coupling effect is weak in Ni, rather strong in Pd and considerably 
stronger in Pt. We take into account these 12 bands in the calculation of xo and x~.. In 
figure 2,  the densities of states in the lowest six bands for.Ni, Pd and Pt are shown and 
their respective values at the Fermi level, indicated by the vertical lines, are 60.3 states 
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Energy IRydl 

Figure 2. Density-of-states curves for Ni, Pd and Pt.  The energies are relative to the Fermi 
level shown by the vertical lines. 

Ryd-'/atom, 31.3 states Ryd-'/atom and 23.1 states Ryd-'/atom. The broadening of 
the d bandwidth in going from Ni to Pt can be seen explicitly. The calculated energy 
band structures (lower six bands and higher six bands) shown in figure 1 do not differ in 
any significant way from previous calculations [31-331 and we show themonly to facilitate 
the discussion in the remainder of this paper. Koelling and MacDonald [34] have 
discussed in detail the relativistic effects occurring in transition metals, and Bacalis et al 
[35] the effects of various approximations used in performing the APW band calculations 
for transition metals. 

Our self-consistent core levels are shown in table 1. We have adopted the same lattice 
constants and the same relativistic exchange-correlation potential as those used by 
MacDonald et a1 [5] ,  but our energies for Pd and Pt differ slightly from theirs. This may 
come from the different conditions under which the core levels are determined. In the 
calculation of ,yo and xso, only the core states higher in energy than - 10 Ryd are taken 
into account and others are neglected because they lie far from the conduction bands. 
Our self-consistent potentials uN actually produce narrow bands around the related 
atomic core levels. Their widths, shown in table 1, however, are so narrow that our 
treatment of core states is valid. 

3.2. Calculated results of xo and ,ys0 

By making use of the wavefunctions and energies obtained above, xo and xso are 
calculated in the manner explained in section 2. In this paper, all susceptibilities are 
given in units of 10F emu mol-'. 
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Table 1. Core levels in Ni. Pd and Pt. These energies have been determined by assuming 
lhat wavefunctions behave as atomic functions outside the APW sphere. The values in 
parentheses show the widlh of the related actual core band. All energies are in Ryd. 

Energy (Ryd) 
~~ 

Wi) Ni Pd PI 

(1st) -599.3315 -1764.6497 -5712.9431 
-10.6923 -251.4156 -1003,3032 

(2PU -61.6556 -239.1440 -962.2734 
-60.3789 -221,5315 -836.9126 
-6.9685 (0.036) -45.9720 -235.1624 

(2?% 
(34) 
(3P9 -4.2130 (0.0W) -38.6838 -216.6254 
(3d) -4.0515 (0,0135) -36.6517 -189.0410 
(3diV -23.6472 - 158.0145 
(34 )  -232413 -152,0362 
(4SO -5.7185 (0,0055) -49.8536 
(4PU -3.4511 (0.0149) -41.9691 

( 4 W  -22.4127 
(4W -21.1811 
c4n, -4.5462 (0.0001) 
(a) -4.2924 (0.0004) 
(5st) -6.6672 (0.0034) 
GPl) -4.1383 (0.0105) 
(S i4  -3.0407 (0.0354) 

(4d) -3.1205 (0.0260) -35.3785 

3.2.1. Trends in  and^^^ for ~ccd-band metals. In order to facilitate the presentation 
of our results, we first show the trends in xo and xm with the ratio e/a of the number of 
conduction electrons to atoms. Under the assumption of rigid bands, the variations in 
x,, and ,yw with e/a are calculated for the FCC 3d, 4d and 5d metal series by using the 
wavefunctions and energies of Ni, Pd and Pt, respectively, and by varying the Fermi 
level. These results are shown in figure 3 and table 2. 

Except for fine structure. the general features of the x. versus ./a curve for the FCC 
3d. 4d and 5d metal series are similar to the previous results for the respective ~ccser ies  
[18]. As expected from the factor (1 - e,)@, in of (3), each xo versus e/a curve has 
large values over the middle range of ./a. where the Fermi level liesin the middle of the 
d band and there are so many states which can be combined by the factor that the values 
of ,yo become large. Another factor l/(e, - E,) in Q,, of (3) makes the values of ,yo large 
when many states combined by the former factor are distributed in a narrow energy 
range. This situation is so well realized in the 3d series that the heights of the xo versus 
e/u curves for the 3d series are considerably larger than those for the 4d and 5d series. 
Because of the latter factor, we can roughly assume thatx, is proportional to the inverse 
of the d bandwidth Wd, i.e. ,yo 0~ 1/Wd. Figure 3 shows that the heights of the x. versus 
e/a curves decrease as one goes from the 3d series to the 5d series. This result can 
be understood from the relation xoa  l/Wd and our observation that 
Wd(Ni) < Wd(Pd) < Wd(Pt) as shown in figure 2. Although the &-values are positive 
and large over the wide middle range of e/a,  they are small, positively or negatively, 
near the ends of each series. That the contributions of xo to the total susceptibilities in 
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~gure3.Trendsinx,andX,withe/a(the numberofconducrionelectmnsperatom). The 
results for the 3d. 4d and 5d series are calculated by using the band structures of Ni, Pd and 
Pt, respectively,and byvaryingtheFermi level. ~ . a n d x ~ f o r  selected valuesolelaare listed 
in table 2 

Ni, Pd and Pt are minor is thus understood. The diamagnetic character of x,, is explicit 
for e/a = 11, i.e. for noble metals, and is noticeable over a wide upper range of ./a in 
the 5d series. 

As seen from figure 3, three ,yw versus e/a curves are mutually very similar. In 
particular, X$,,-values are negative at smaller values of e/a and positive at larger values 
of ./a. This characteristic has been found also in our previous results of x3,, for the BCC 
3d, 4d and 5d series [IS]. MacDonald 1361 has found a similar characteristic in the g- 
shifts of transition metals; the g-shifts tend to be negative towards the bottom of the d 
bandandpositive towards the top of thed bandin allcasesof Bcc,Fccand ~c~s t ruc tures .  
Following Koelling and MacDonald [34], this characteristic in the g-shifts comes from 
the fact that, when spin-orbit coupling is included, eigenstates towards the bottom of 
the d band tend to have spin and orbital angular momentum in opposite directions while 
those towards the top of the band tend to have these directions more parallel. Probably, 
this fact has caused the characteristic in the xw versus ./a curves mentioned above, too. 

Since xso is an explicit relativistic correction to the susceptibility, an increase in the 
absolute values of xs0 is expected in going from the 3d series to the 5d series. On the 
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other hand, because of the factor l / ( q  - EJ in 0, of (4), xs also depends on Wd as 
xso l/Wd. We can see, from figure 1, that the spin-orbit coupling effect is not much 
stronger in the 4d series than in the 3d series and, from figure 2,  that thc 4d band is wider 
than the 3d band. In figure 3, the depths and/or heights of the xs0 versus e/a curves for 
the 4d series are almost the same as those for the 3d series. This result shows that, in the 
4d series, the increase in the relativistic correction is nearly compensated by the increase 
in Wd. In the 5d series, however, the spin-orbit coupling effect is stronger than in the 4d 
series so that the increase in the relativistic correction inore than compensates the 
increase in Wd. We thus understand the result that the depths and/or heights of the ,ys 
versus e / a  curves for the 5d series are larger than those for the 4d series. 

3.2.2. ~ o a n d x s o i n N i ,  PdandPr. Table3shows,forNi, PdandPt,ourcalculatedvalues 
of,yo,Xs0 andX = ,yo + xso, empiricallyestimatedvalues Ole!.,,ofX,previously reported 
theoretical values of the enhanced spin susceptibility Ix9,  theoretical values of the total 
susceptibility x = 1~~ + ,yc and observed values of the total susceptibility xexp. 

Ourresultx, = 63forNiisveryclose totheempiricalvalue(Xc),,p = 59[37]estimated 
as a temperature-independent contribution to the susceptibility in paramagnetic state. 
The present result ,yo = 42 is very close to our previous non-relativistic result xorb = 44 
[15] which has been obtained with the lattice constant a = 6.55 au and Wd = 0.360 Ryd 
(energy difference between X, and Xs levels in the previous non-relativistic band). If 
we assume that xorb Q a’/Wd [16], we can estimate a value of xorb under the present 
conditions a = 6.644 au and W, = 0.339 Ryd (energy difference between X? and X,t 
levels in the present relativistic band). This result xorb = 48 is still close to the present 
result xo = 42. From a small difference between xo andxy,,,, the relativistic correction in 
xo seems to be small in Ni. 

At low temperatures, Ni is ferromagnetic. Its spin-polarized relativistic band struc- 
ture is very complex [53,54] and proper evaluations of xo and xs will be difficult. 
Therefore, we make crude estimationsofX,andX,, in ferromagnetic Ni by usinga rigidly 
split band model. Our degenerate paramagnetic bands are split rigidly by 0.53 eV with 
each other so as to produce the magneton number 0.56 [55]. Respective values of xo at 
the new Fermi level in the majority and the minority spin bands are 4 and 34 and those 
of xs are 1 and 7. Sums of the contributions from both bands are listed in table 3. The 
present result xc = 46 is closer to the empirical values than our previous result xorb = 27 
[U]. Because of our crude estimation of xc and/or a rather small calculated value of the 
high-field spin susceptibility lxs, agreement between theory and experiment is not so 
good. 

As for Pd and Pt, our values of xc are close to the empirical values (XJemp. Since Pd 
and Pt are transition metals with nearly filled d bands, xc has been assumed to be small. 
In fact, xc for Pd is very small and is only about 1% of the large observed paramagnetic 
susceptibility. The orbitaI contribution to the magnetic susceptibility iu negligible in Pd. 
On the other hand, in Pt, xc is negative and its absolute value is about 17% of the 
observed susceptibility. The orbital contribution to the magnetic susceptibility is not 
negligibly small in Pt. Unfortunately, as seen from table 3, previous theoretical results 
for Ix, are still not satisfactory for Ni, Pd and Pt, and we cannot discuss the overall 
agreement or disagreement between theory and experiment for the total susceptibility. 

3.2.3. xo and xso in Rh, lr ,  Cu, Ag and Au. Rh and 11 are, respectively, 4d and 5d 
transition metals of FCC structure. Cu, Ag and Au are noble metals having filled 3d, 4d 
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and 5d bands, respectively, and their structures are FCC. These metals are neighbours 
of Ni, Pd and Pt in the periodic table and their band structures are mutually very similar 
[29,33,5643].  Therefore, it is possible toestimate and&, in these metalsfrom table 
2 by making reasonable corrections. We can roughly assume the relations ,yo = a’/Wd 
and xro a a/Wd from (1)-(4). If we know a pair of ratios of a and W,  to those of Ni for 
the 3d series, to those of Pd for the .Id series and to those of Pt for the 5d series, we can 
estimate more reliable values than those shown in table 2. The two ratios concerning a 
and Wd are obtained from the data of the lattice constant and the energy difference 
between self-consistent semi-relativistic X I  and X5 levels in a handbook by Papa- 
constantopoulos [33]. The results are shown in table 4. Agreement between ,& and 
&e)cmp is fairly good. By using previously reported theoretical values of the total 
susceptibility x = Ix ,  f xc is estimated and compared with the observed values xexp in 
table 4. Agreement between theory and experiment is excellent for Ir and Ag, and 
satisfactory for Rh, Cu and Au. 

4. Conclusion 

In this paper, we have evaluated the uniform unenhanced orbital and spin-orbit sus- 
ceptibilities in Ni. Pd and Pt properly and those in Rh. Ir, Cu, Ag and Au approximately 
by adopting the rigid-band assumption with reasonable corrections. For both cases. our 
results are in good agreement with empirical results. For the latter case. theoretical 
values of the total susceptibility estimated from our results and previously reported 
theoretical results of the enhanced spin susceptibility are close to observed suscep- 
tibilities. Our present study, together with our previous investigations, shows that our 
numerical method. although simple, is successful in obtaining reliable values of the 
uniform unenhanced orbital and spin-orbit susceptibilities in transition and noble 
metals. 
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